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An energy criterion for conditional stability is proposed, based on the definition of
generalized energies, obtained through a perturbation of the classical L2 (kinetic)
energy. This perturbation is such that the contribution of the linear term in the
perturbation equation to the generalized energy time derivative is negative definite.
A critical amplitude threshold is then obtained by imposing the monotonic decay
of the generalized energy. The capabilities of the procedure are appraised through
the application to three different low-dimensional models. The effects of different
choices in the construction of the generalized energy on the prediction of the critical
amplitude threshold in the subcritical regime are also discussed.

1. Introduction
Many shear flows are characterized by the so-called subcritical instability, i.e.

instability occurring at Reynolds numbers, Re, for which the laminar base flow is
linearly stable. In this regime, the stability of the base flow is guaranteed only if the
initial amplitude of a given disturbance is lower than a critical threshold value. This
value is a decreasing function of Re between Reg and ReL, ReL being the critical
Reynolds number predicted by linear stability and Reg being the Reynolds number
of global stability, i.e. for Re <Reg all disturbances, whatever their initial amplitude,
decay asymptotically in time. For most of the flows characterized by subcritical
instability, the classical energy stability theory predicts a critical Reynolds number
(ReE) which is significantly lower than Reg . This discrepancy is due, first, to this theory
requiring the disturbance energy to decrease monotonically to zero; however, the
non-normality of the linearized Navier–Stokes (NS) operator leads to the well-known
transient growth of the disturbance energy, which eventually may decrease to zero.
Furthermore, for many flows the nonlinear part of the NS operator and, consequently,
the amplitude of the disturbance, do not play a role in the computation of ReE .

The aim of the present work is to investigate whether the predictions of the
energy theory may be improved if the problems related to the non-normality
of the linear operator are by-passed and the amplitude of the disturbance is
taken into account. To this end, generalized energies can be defined, such that
the contribution to their time derivative of the linear term in the perturbation
equation is negative definite. Generalized energies have already been introduced in
hydrodynamic stability problems, mainly to extend the energy stability theory to
flows involving particular phenomena, such as heat transfer or convection in porous
media (see e.g. Straughan 2004 and Joseph 1976). Furthermore, methods based on
Lyapunov functions (generalized energies) have been used to find analytical bounds for
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conditional stability (see e.g. Kaiser & Mulone 2005). An exotic energy, characterized
by a negative-definite linear contribution to its time derivative, has been introduced
in Dauchot & Manneville (1997) for a particular two-dimensional dynamic system,
in an investigation of the importance of nonlinear effects in the subcritical transition
regime. In the present study, a procedure is proposed to construct generalized energies
through a perturbation of the L2 metric. If these energies are used in the framework
of the energy stability theory, in place of the kinetic energy, a criterion for conditional
stability is obtained, which can be used to numerically compute critical threshold
values for the disturbance amplitude in the subcritical regime. The proposed procedure
is then applied to different low-dimensional models: the two-dimensional model of
Dauchot & Manneville (1997), the four-dimensional system describing a self-sustained
process in wall turbulence (Waleffe 1995), and the four-dimensional model for a
transitional Couette-like shear flow (Waleffe 1997). The results are compared to those
from numerical simulations reported in Cossu (2005, 2004).

2. Energy stability criterion with a generalized energy
We analyse how a generalized energy stability theory can be developed by replacing

the kinetic energy with E, which is a positive-definite bilinear form given by

E(u) = 1
2
〈u, u〉E (2.1)

in which u is a given disturbance of the base flow and 〈·, ·〉E denotes the scalar
product in a new metric, which will be defined in § 3.

In analogy with the derivation of the Reynolds–Orr equation, the functional express-
ing the time derivative of the new energy is obtained from the equation governing the
evolution of the disturbance. In the present case, as the nonlinear term contribution
is typically non-zero, this functional is not homogeneous: a quadratic part is present,
which is related to the linear operator in the disturbance equation, L, and is expressed
as: L(u) = 〈u, Lu〉E. The cubic part, related to the nonlinear term in the disturbance
equation, N(u), is N(u) = −〈u, N(u)〉E. Hence, we finally have

dE(u)

dt
= L(u) + N(u)

and the stability criterion requires the time derivative of E to be negative, i.e. the
generalized energy to decay monotonically. The two parts of the functional scale
differently with respect to the disturbance amplitude: for a generic disturbance u

dE(αu)

dt
= α2L(u) + α3N(u) ∀ α ∈ �. (2.2)

Thus, for a very small disturbance the only significant term is the quadratic one,
while the cubic one progressively becomes dominant as the disturbance amplitude
increases. This implies, first, that a stability criterion based on the monotonic decay of
the new energy is meaningful only if the quadratic part L is negative definite. Thus,
the new energy must be constructed in such a way that L be negative definite. This
is not the case for the classical energy, if the Reynolds number is larger than ReE .
As discussed in the Appendix, independently of the metric, L cannot be negative
definite if Re >ReL, and thus the proposed criterion is clearly restricted to Re< ReL.

The second consequence of the inhomogeneity of the two contributions to the time
derivative of E is that the stability criterion based on the monotonic decay of the new
energy will be conditioned by the amplitude of the initial disturbance. Let us define
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the functional

F(u) = − N(u)

L(u)
√

E(u)
,

which is homogeneous of degree 0. Let us assume F(u) to be bounded, and define

1

α
= sup

u
F(u). (2.3)

It follows that, for the range of Reynolds numbers for which the contribution of the
linear terms is negative definite, the following inequality holds:

N(u) � − 1

α
L(u)

√
E(u),

and thus:
d

dt
E(u) � L(u)

(
1 − 1

α

√
E(u)

)
. (2.4)

This gives a conditional monotonic stability criterion: if the initial generalized energy
is lower than α2, it monotonically decays to zero.

In general, the threshold value α will be a function of the Reynolds number, and the
classical energy stability theory may be considered as a special case giving a threshold
value that is infinite for Reynolds numbers below ReE and zero otherwise. By using
the L2 energy, the contribution of the nonlinear term, N(u), vanishes and, thus, the
time evolution of energy does indeed becomes independent of α (see (2.2)). Stability
is hence obtained for all disturbance intensity only if L(u) is negatively defined, i.e.
if Re <ReE . We consider the more general case of a new energy functional which
depends on the Reynolds number. In this way we can express a sufficiently general
criterion of stability to retrieve the classical energy stability results for Re = ReE and
to give a zero amplitude threshold for Re approaching the linear critical value, ReL.

3. Generalized energy construction
In this section we show how a generalized energy can be defined to meet the above

requirements. To summarize, we search for a positive-definite bilinear form E, having
an associated negative-definite functional L. It can be shown (see the Appendix) that
the required condition for L to be negative definite automatically implies that E is
positive definite, and, thus, in constructing the new energy, we need only consider
satisfaction of the requirement on L.

As stated in § 2, E is a generalized energy in a new metric, which is obtained through
a perturbation of the L2 metric as follows:

〈u, v〉E = 〈u, v〉L2 + 〈u, v〉P , (3.1)

where 〈·, ·〉L2 denotes the L2 scalar product and 〈·, ·〉P the perturbation term.
The contribution of the linear term to the time variation of the generalized energy

may then be rewritten as follows:

L(u) = 〈u, Lu〉E = 〈u, Lu〉L2 + 〈u, Lu〉P (3.2)

where, under the same assumptions on boundary conditions used in the derivation
of the Reynolds–Orr equation, 〈u, Lu〉L2 is the time variation of the classical energy.
We search for a decomposition of the disturbance space, D = D+ ⊕ D−, such that the
restriction of 〈u, Lu〉L2 to D− is negative definite. Note that D− does not necessarily
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contain all the disturbances satisfying this requirement. Also D− must be invariant
with respect to L; this is not strictly needed in finite dimensions, as in all the cases
considered here, but it is maintained in view of a formal extension of the method
to infinite-dimensional space (Navier–Stokes equations). The linear operator L may
thus be split as the sum of L+ = L(πD+(·)) and L− = L(πD−(·)), π+

D and π−
D being the

projections on D+ and D−. Thus, L+ contains the part of L responsible for the linear
transient growth of the classical energy. Hence, 〈u, Lu〉L2 can also be split in two
parts: V−(u) = 〈u, L−u〉L2 and V+(u) = 〈u, L+u〉L2 ; V−(u) is negative semi-definite,
while V+(u) is non-negative definite for Re > ReE . Note that, as will be shown also
in § 4, this decomposition is not unique.

As previously stated, the perturbation term, 〈u, Lu〉P, should be chosen in order to
render L(u) negative definite (for Re <ReL). This can be done by choosing

〈u, Lu〉P = − (V+(u) + εE(πD+(u))) (3.3)

in which ε is a positive free parameter. In practice, (see § 4) the perturbation operator
can be computed by numerically solving (3.3). From (3.2) and (3.3), it follows that
L(u) is negative definite and the following inequality holds: L(u) � − εE(πD+(u)).

4. Application to low-dimensional models
A low-dimensional model written in the following general form is considered:

dU
dt

= L U + N(U). (4.1)

in which U is the vector of the unknown variables. Attention is focused on the two-
dimensional model proposed in Dauchot & Manneville (1997) (called DM hereafter),
on the four-dimensional system describing a self-sustained process in wall turbulence
(Waleffe 1995, W95), and on the four-dimensional model for a transitional Couette-
like shear flow (Waleffe 1997, W97).

For the DM model the two relevant variables are denoted u = (u, v)T , and the
linear operator in (4.1) is given by

L =

(
s1 1
0 s2

)

where s1 and s2 are functions of a control parameter (the Reynolds number, Re); for
linear stability both s1 and s2 must be negative. The nonlinear term is expressed as
N(u) = (uv, −u2)T . The dynamics of the model in the phase space has been investigated
in Dauchot & Manneville (1997). The trivial solution u = v = 0 represents the laminar
basic flow.

By using (2.1) and (3.1), the generalized energy can be written in a matrix form:

E = 1
2
(UT (I + P) U) (4.2)

in which I is the identity matrix, and P is the perturbation matrix. Thus, the generalized
energy is defined once P is computed. By recalling the definition of V+(u), (3.3) may
also be rewritten in a matrix form as follows:

UT P LU = −UT L+U − 1
2
εUT ΠT ΠU (4.3)

where Π is the matrix projecting U on the subspace D+, i.e. U+ =Π U . In all the
cases considered hereafter, Π = I+, I+ being a diagonal matrix such that (I+)ii = 1 if
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(L+)ii �= 0, (I+)ii = 0 otherwise. Thus, the perturbation matrix can be obtained by
solving the following Lyapunov equation:

LT P + P L = −(L+T + L+) − εI+. (4.4)

To this end, L+ and ε must be specified first. As previously mentioned, L+ must
contain the part of the linear operator L responsible for the transient growth of
energy. For the DM model, under the assumptions made on the subspace D− and, in
particular, its invariance with respect to L, the only possible choice is L+ = L. Thus,
the perturbation matrix is easily computed from (4.4) and is such that

M = P + I=

⎛
⎜⎝

− ε

2s1

ε

2s1(s1 + s2)

ε

2s1(s1 + s2)
−

ε
(
1 + s2

1 + s1s2

)
2s1s2(s1 + s2)

⎞
⎟⎠ , (4.5)

M being the matrix defining the new metric. It appears that M is linear in ε. In
general, when L+ coincides with the whole linear operator, the perturbed metric turns
out to be linear in ε. Thus, it can easily be seen that the results of the proposed
stability criterion are independent of ε. For simplicity, let us thus consider here
ε = 1. Equation (4.5) thus defines the generalized energy for all values of the DM
model parameters, s1 and s2. We consider, first, a particular DM model (Cossu 2004),
obtained for s1 = − (4Re)−1 and s2 = − (Re)−1, and we proceed with the solution of
(2.3) for different values of Re. Recall that the solution of (2.3) gives the threshold
amplitude α in terms of the new metric, and that the generalized energy of any
disturbance whose initial amplitude is lower than α monotonically vanishes in time.
In order to compare with the results in the literature, usually given in terms of critical
energy or amplitude in the L2 norm, these values must be computed from the critical
amplitudes in the new norm. This can be done, since the following bound exists:
E � λmE, λm being the maximum eigenvalue of M. Thus, by taking√

E0 =
√

1/λm α (4.6)

an amplitude threshold can be obtained, which guarantees that all the disturbances
with initial kinetic energy lower than E0 are characterized by a monotonically
decreasing generalized energy and are thus stable. This choice is conservative, but it
introduces an additional source of error, as will be discussed in the following.

Figure 1(a) compares the threshold amplitude (in the L2 norm) obtained by the
proposed criterion, for the DM model considered and for different Reynolds numbers,
to the results of the computations in Cossu (2004), taken as a reference solution. Good
agreement is found for Re � 2 and, in particular, the scaling of the critical amplitude
for large enough Reynolds numbers, i.e. Re−3, is predicted well. For 1 <Re < 2 the
proposed criterion underestimates the amplitude threshold in the L2 norm. Recall
that this DM model is globally stable for Re � 1. To better understand the behaviour
of the proposed criterion, figures 1(b) and 1(c) show part of the line delimiting
the attraction basin of the basic laminar flow (thick dashed line) together with the
stability region given by the proposed criterion in the new metric (largest ellipse) at
Re = 1.1 and Re = 2, respectively. The inscribed circle for this ellipse is the stability
region obtained from the proposed criterion in the L2 metric through (4.6), while the
smallest ellipse is the stability region given by the energy criterion, when the ‘exotic’
energy proposed in Dauchot & Manneville (1997) is used. Note first that, due to the
introduced perturbation of the L2 metric, a constant level of generalized energy is
identified in the phase space by an ellipse with axes rotated with respect to the axes
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Figure 1. (a) Threshold amplitude (in the L2 norm) of the initial critical disturbance given
by the proposed energy criterion for the DM model considered, as a function of the Reynolds
number. (b) Behaviour of the proposed criterion in phase space at Re= 1.1: part of the line
delimiting the basin of attraction of the basic laminar flow (thick dashed line), stability region
given by the proposed criterion in the new metric (largest ellipse) and in the L2 metric (dashed
circle), stability region given by an energy criterion using the ‘exotic’ energy of Dauchot &
Manneville (1997) (smallest ellipse). In grey area dE/dt � 0. (c) Same as (b) but for Re= 2.

u =0 and v = 0. As stated in § 2, since the metric depends on the Reynolds number,
the direction of the axes and the aspect ratio of the ellipse change with the Reynolds
number (compare figures 1b and 1c). The critical disturbance is identified by the point
at which the stability region given by the proposed criterion is tangent to the line
delimiting the grey area, on which dE/dt =0, the grey area being the region of the
phase space in which dE/dt � 0. At Re= 2, this point belongs to the boundary of
the actual attraction basin of the basic laminar flow, and thus an accurate prediction
of the critical threshold amplitude is obtained in terms of the generalized energy. It
can be seen that the estimate of the stability region in terms of L2 energy, given by
the circle, is also very close to the boundary of the stability region and, thus, the
prediction of the threshold amplitude in the L2 norm is also accurate (see figure 1a).
At Re= 1.1, the stability regions given by the proposed criterion both in the new and
in the L2 metrics do not reach the limit of the basin of attraction; thus, the proposed
criterion underestimates the critical amplitude threshold. However, note that the error
in the estimation obtained in the new metric, i.e. the minimum distance between the
largest ellipse and the dashed line in figure 1(b) is significantly lower than the error in
the L2 norm, i.e. the minimum distance between the circle and the dashed line. This
is because, as previously mentioned, the proposed criterion naturally gives the critical
energy threshold in the new metric; in order to express this in terms of classical
energy, an inequality is used and a further error may be introduced. We repeated the
procedure with different values of s1 and s2, always proportional to −Re−1, and in
all cases found that the critical amplitude scales as Re−3, as indicated in Dauchot &
Manneville (1997).

For both the W95 and W97 models, the variables involved are u, v, w, m. The
linear operator in (4.1), for both W95 and W97, is given by

L =

⎛
⎜⎜⎝

−k2
u/Re σu 0 0

0 −k2
v/Re 0 0

0 0 −
(
k2

w/Re + σm

)
0

0 0 0 −k2
m/Re

⎞
⎟⎟⎠ .
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Waleffe (1995, 1997) give the relevant expressions for the nonlinear term. The W95
model corresponds to ku = kv = km =

√
10, kw =

√
15, σu = σv = 1, σw =1/2 and σm = 0,

and the W97 model to ku =
√

5.2, kv =
√

7.67, km =
√

2.47, kw =
√

7.13, σu = 1.29,
σv = 0.22, σw =0.68 and σm = 0.31. Their dynamics are studied in Waleffe (1995,
1997). We just recall that the global stability Reynolds number is Reg = 98 for W95
and Reg =104.84 for W97, and that, applying the classical energy theory, gives a
critical energy Reynolds number, ReE , equal to 20 for W95 and to 4.89 for W97.

For these models, the choice of L+ is not unique. We start by considering three
possible choices satisfying the requirements on D− (see § 3), and then we discuss how
the results depend on ε. The first is L+ = L (case A). As a second case (B), L+ is
obtained from L by putting L33 = 0, while in the last case (C) both L33 and L44 are
set equal to zero. An additional choice would be possible, namely to obtain L+ from
L by putting L44 = 0; however, this behaves very similarly to case B. By solving (4.4)
with L+ thus defined as in cases A, B and C, the perturbation matrices defining the
new metrics are computed. For case A we obtain

MA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Reε

2k2
u

Re2σuε

2k2
u

(
k2

u + k2
v

) 0 0

Re2σuε

2k2
u

(
k2

u + k2
v

) Re
(
k4

u + k2
uk

2
v + Re2σ 2

u

)
ε

2k2
uk

2
v

(
k2

u + k2
v

) 0 0

0 0
Reε

2k2
w + 2Reσm

0

0 0 0
Reε

2k2
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.7)

MB , defining the new metric for case B, is equal to MA except that (MB)33 = 1, and
MC is equal to MA except that (MC)33 = (MC)44 = 1. These matrices can be specialized
either for W95 or W97 by inserting the relevant values of the model parameters.
Going from case A to case C, the part of the time variation of the classical energy
to be counteracted by the perturbation term decreases and, as a consequence, the
perturbation introduced in the new metric, with respect to the L2 one, is also expected
to become smaller.

In all cases the parameter ε is initially chosen to obtain det(I + P) = 1, so that the
metric defining the new energy has the same volume measure as the L2 one.

In figure 2(a) the threshold amplitudes of the critical initial disturbance, obtained for
W95 through the energy criterion proposed, are shown as a function of the Reynolds
number; the threshold amplitudes are given in the L2 norm. The scaling (for large
enough Reynolds numbers) of the critical amplitude (in L2) for the W95 model has
been estimated as Rek , with k = −2 (Baggett & Trefethen 1997; Cossu 2005). The
amplitude threshold values computed by Cossu (2005), which indeed scale as Re−2,
are shown in figure 2(a) for comparison. It can be seen that the less ‘aggressive’ the
metric perturbation the more accurate is the scaling of the critical amplitude with the
Reynolds number. In particular, k = −3, −2.4, −2 is obtained for cases A, B and C
respectively, and thus the correct scaling is predicted in case C. However, comparing
the values obtained through the proposed criterion with those computed in Cossu
(2005), shows that they are significantly underestimated, also for case C. This is also
confirmed by numerical simulations, for a wide range of Reynolds numbers, carried
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Figure 2. W95: (a) Threshold amplitudes (in the L2 norm) given by the proposed criterion for
cases A, B, C as a function of Re. (b) Kinetic energy threshold as a function of the parameter
ε for three values of Re: —, Re= 549; - - - , Re =1097; - . - . - Re= 2507. (c) Same as (a) but for
case C with the previous and the optimal values of ε.

out using the critical disturbance shape as initial condition in order to measure the
amplification factor needed to trigger instability. From these simulations for case C,
the predicted critical disturbance appears to need an amplification factor ranging
from 5 to 8 to become unstable.

Recall that those results were obtained with the parameter ε fixed by requiring
the volume measure of the new metric to be the same as that of the classic one;
however, by applying the proposed energy criterion for different values of ε we find
out that the predicted critical energy threshold depends on ε and that, for all Re, it
is characterized by a maximum, as shown in figure 2(b). The previously used values
of ε are also indicated by the crosses. Thus, the conditional stability curve has been
computed again for case C using the value of the parameter ε at which the critical L2

energy threshold is a maximum (corresponding to the open circles in figure 2(b) and
hereafter called optimal ε). The energy threshold obtained has the same correct scaling
with the Reynolds number, but gives a better quantitative areement with the results
of the numerical simulations in Cossu (2005) (see figure 2c). This is also confirmed a
posteriori by numerical simulation; the predicted critical disturbance is indeed found
to be unstable, when multiplied by a factor that is very close to one (1.06 � 1.30).

The calculations carried out for the W97 model confirm that, as observed for the
W95 case, the results that are closest to the reference simulations in Cossu (2005)
are obtained for the least perturbative modification of the L2 metric, corresponding
to case C. However, for this model, even when using the optimal ε, the threshold
amplitude in the L2 norm is significantly underestimated: following our criterion it
is well fitted by 3Re−1.3, while the simulations in Cossu (2004, 2005) give 15Re−1.07.
This is because, although the energy transient growth caused by the non-normality
of the linear operator has been eliminated, the region of the phase space in which
the generalized energy decays monotonically is, in this case, well inside the actual
attraction basin of the basic laminar solution. Note that, following our criterion, this
is the region in which the contribution of the nonlinear term to the time derivative
of E is smaller than that of the linear term.

5. Concluding remarks
The capabilities of an energy criterion for conditional stability, based on the

definition of generalized energies, have been investigated. The procedure consists
of two main steps. First, a generalized energy is defined through a perturbation of
the classical L2 energy, to by-pass the problems related to the non-normality of the
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linearized operator. Indeed, the pertubation is such that the time variation of the
generalized energy due to the linear term of the disturbance evolution equation is
negative definite. Second, by imposing the monotonic decay of the generalized energy,
a criterion of conditional stability is obtained for each Reynolds number up to ReL.

The procedure has been applied to three different low-dimensional systems. For
the two-dimensional DM model the definition of the generalized energy is unique
and the predictions of the proposed criterion are independent of the free parameter
ε. The proposed criterion gives an estimate of the critical disturbance amplitude
which is in excellent agreement with the reference simulations in Cossu (2004), except
for very low Reynolds numbers (Re < 2). For the four-dimensional W95 and W97
models there are different possible choices in the construction of the generalized
energy. For W95, the correct scaling of the critical disturbance amplitude with
the Reynolds number has been obtained by constructing the generalized energy
with the least perturbative modification of the L2 metric. A satisfactory (although
slightly underestimated) quantitative evaluation of the critical amplitude has also
been obtained by adopting a particular choice of ε. The calculations for the W97
model confirmed that the least perturbative modification of the L2 metric is the
best choice, as expected since it corresponds to the case in which the contribution
of the nonlinear term to the generalized energy growth is as small as possible.
However, for this model, even with the optimal choice of ε, the threshold amplitude is
significantly underestimated by the proposed criterion. This indicates that, although
in our criterion the problem of the the non-normality of the linear operator has been
overcome, the region in which the generalized energy monotonically decays may be
well inside the actual stability region. This depends on the relative weight of the
nonlinear and linear terms in the time evolution of the generalized energy, which
suggests a possible modification of the construction of the generalized energy to
impose a further constraint on the relative weights of the different contributions to
the time derivative of E.

Nonetheless, the present criterion gives for each Re a region of the phase space
in which the system is certainly stable, although this region may be smaller than
the actual one. This information can be useful, for instance, when searching for
the critical amplitude by numerical simulation, as in Cossu (2004, 2005); all the
disturbances inside the stability region given by the present criterion can be excluded
from the possible initial conditions, and the simulations can be stopped as soon as
the disturbance enters this region.

Finally, the procedure is general and can be applied to any finite-dimensional
dynamic system, and, in particular, to those deriving from the Galerkin projection of
the Navier–Stokes equations, as in most numerical discretization methods. Following
the present results, the generalized energy can be computed by choosing as L+ the
smallest block of the linear operator matrix which causes the classical energy growth,
and by numerically solving the relevant Lyapunov equation.

The authors wish to acknowledge G. Burest, for his many valuable suggestions and
comments.

Appendix. Additional properties of the generalized energy
To any symmetric bilinear form S we can associate another bilinear form δS,

defined by

〈u, v〉δS = − (〈Lu, v〉S + 〈u, Lv〉S). (A 1)
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This map is formally invertible as∫ ∞

t=0

〈etLu, etLv〉δS dt = −
∫ ∞

t=0

〈L etLu, etLv〉S + 〈etLu, L etLv〉Sdt

= −
∫ ∞

t=0

d

dt
(〈etLu, etLv〉S) dt = 〈u, v〉S (A 2)

where the last equality follows because L is assumed to have a stable spectrum so
that limt→∞ et Lu = 0, ∀u ∈ D. This means that in the proposed procedure, we always
assume that Re <ReL. Specializing (A 1) and (A 2) to the new energy, we have

L(u) = 〈u, Lu〉E = − 1
2

〈u, u〉δE, E(u) = 1
2

〈u, u〉E = 1
2

∫ ∞

t=0

〈
etLu, etLu

〉
δE dt. (A 3)

It follows that the problem of choosing the new energy functional can be reduced
to the choice of a positive-definite bilinear form δE. Thus, the required condition for
L to be negative definite automatically implies that E is positive definite. From a
practical viewpoint, this implies that, in constructing the new energy, we need only
consider the satisfaction of the requirement on L. Moreover, (A 3) has the following
interesting interpretation: measuring the instantaneous value of the disturbance energy
E is equivalent to evaluating the integral of its time evolution due to the linearized
Navier–Stokes operator in the metric δE. Thus, this allows information on the global
time behaviour of the perturbation to be obtained by the evaluation of the E energy
at the initial condition.
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